Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Fuel Effects on Emissions from an Advanced Technology Vehicle

1992-10-01
922245
A 1991 Toyota Camry equipped with an electrically-heated catalyst (EHC) system was evaluated in duplicate over the Federal Test Procedure (FTP) with three different fuels. Evaluations were conducted with the EHC in place but without any external heating, and with the EHC operated with a post-crank heating strategy. The EHC system was placed immediately upstream of an original production catalyst, which was then moved to a location 40.6 cm from the exhaust manifold. The three test fuels were: 1) the Auto/Oil industry average gasoline, RF-A; 2) a fuel meeting California's Phase II gasoline specifications; and 3) a paraffinic test fuel. Non-methane organic gas (NMOG) emission rates with the EHC active were similiar with all three fuels, with absolute levels less than or equal to California's 50,000 mile Ultra-Low Emission Vehicle (ULEV) standard. Substantial differences, however were observed in the ozone forming potential of these fuels with the EHC active.
Technical Paper

Design and Development of Catalytic Converters for Diesels

1992-09-01
921677
Improvements in diesel engine design to reduce particulate emissions levels, and a recent Environmental Protection Agency (EPA) ruling limiting the maximum sulfur content in diesel fuel, enhanced the viability of catalytic aftertreatment for this market. The Department of Emissions Research, Southwest Research Institute (SwRI), under contract from the Engine Manufacturers Association, (EMA), conducted a search to identify flow-through catalyst technologies available to reduce particulate emissions without trapping. The search revealed a variety of catalyst formulations, washcoats, and substrate designs which were screened on a light-duty diesel. Based on the performance of eighteen converters evaluated, several designs were selected to continue experimentation on a modern technology heavy-duty diesel engine.
Technical Paper

Application of On-Highway Emissions Technology to a Backhoe

1992-04-01
920922
Recent legislation, including the California Clean Air Act of 1988 and the Federal Clean Air Act Amendment of 1990, includes off-road engines, equipment, and vehicles as targets for new exhaust emissions regulations. The Santa Barbara County Air Pollution Control District in cooperation with EXXON USA is conducting a major Low NOx Demonstration Program including mobile sources, construction equipment, and offshore equipment. As a part of this program, an existing backhoe has been retrofitted with a low NOx engine and demonstrated in the field. This paper discusses the work performed to allow Case model 580 backhoes to be retrofitted with Cummins 4BTAA3.9 on-highway turbocharged diesel engines. A standard production conversion kit can be used to mount the new engines in place of the older existing JI Case engines in some models while other newer models already have 4B3.9 engines. In addition, an air-to-air aftercooler and associated plumbing was designed and installed.
Technical Paper

Cold-Start Hydrocarbon Collection for Advanced Exhaust Emission Control

1992-02-01
920847
This paper describes the findings of a laboratory effort to demonstrate improved automotive exhaust emission control with a cold-start hydrocarbon collection system. The emission control strategy developed in this study incorporated a zeolite molecular sieve in the exhaust system to collect cold-start hydrocarbons for subsequent release to an active catalytic converter. A prototype emission control system was designed and tested on a gasoline-fueled vehicle. Continuous raw exhaust emission measurements upstream and downstream of the zeolite molecular sieve revealed collection, storage, and release of cold-start hydrocarbons. Federal Test Procedure (FTP) emission results show a 35 percent reduction in hydrocarbons emitted during the cold-transient segment (Bag 1) due to adsorption by the zeolite.
Technical Paper

Selection and Development of a Particulate Trap System for a Light Duty Diesel Engine

1992-02-01
920142
In order to meet progressively stringent regulations on particulate emission from diesel engines, GM has developed and tested a variety of trap oxidizer systems over the years. A particulate trap system for a light duty diesel engine has been selected and developed based on this experience, with particular emphasis on production feasibility. The system components have been designed and developed in collaboration with potential suppliers, to the extent possible. The technical performance of this system has been demonstrated by successful system durability testing in the test cell and vehicle experience in computer controlled automatic operation mode. Although the system shows promise, its production readiness will require more development and extensive vehicle validation under all operating conditions.
Technical Paper

Preparation and Testing of an Electric Competition Vehicle

1991-08-01
911684
A Dodge Omni electric car was prepared for competition in an electric “stock car” 2-hour endurance event: the inaugural Solar and Electric 500 Race, April 7, 1991. This entry utilized a series-wound, direct-current 21-hp electric motor controlled by an SCR frequency and pulse width modulator. Two types of lead-acid batteries were evaluated and the final configuration was a set of 16 (6-volt each) deep-cycle units. Preparation involved weight and friction reduction; suspension modification; load, charge and temperature instrumentaltion; and electrical interlock and collision safety systems. Vehicle testing totalled 15 hours of operation. Ranges observed in testing with the final configuration were from 30 to 52 miles for loads of 175 to 90 amperes. These were nearly constant, continuous discharge cycles. The track qualifying speed (64mph) was near the 68 mph record set by the DEMI Honda at the event on the one-mile track.
Technical Paper

Evaluation of Emission Control Technology Approaches for Heavy-Duty Gasoline Engines

1978-02-01
780646
This paper summarizes a laboratory effort toward reducing nine-mode cycle composite emissions and fuel consumption in a heavy-duty gasoline engine, while retaining current durability performance. Evaluations involved standard carburetors, a Dresserator inductor, a Bendix electronic fuel injection system, exhaust manifold thermal reactors, and exhaust gas recirculation, along with other components and engine operating parameters. A system consisting of electronic fuel injection, thermal reactors with air injection and exhaust gas recirculation, was assembled which met specified project goals. An oxidation catalyst was included as an add-on during the service accumulation demonstration. In addition, the driveability of this engine configuration was demonstrated.
Technical Paper

The Effect of Exhaust System Geometry on Exhaust Dilution and Odor Intensity

1971-02-01
710219
Diesel exhaust gas dilution and odor intensity were measured in the immediate vicinity of a transit bus equipped with a rear-mounted horizontal exhaust pipe, a rear-mounted vertical exhaust pipe, and a roof-top diffusion system. Exhaust dilution ratios were measured indoors during vehicle idle operation, using propane added to the exhaust gas as a tracer. Exhaust odor intensities were measured also indoors during vehicle idle operation by a human panel, using a threshold odor measurement technique. On the average, the dilution of the exhaust gas around the bus with the vertical exhaust pipe was about eight times greater than it was with the horizontal pipe. Odor intensity, as measured by the threshold response distance, was about 35% less with the vertical pipe than with the horizontal pipe. The roof-top diffuser was not as effective as the vertical exhaust pipe in increasing exhaust gas dilution or in reducing exhaust odor intensity.
Technical Paper

Noise Reduction Techniques as They Apply to Engine-Generator Design and Treatment

1969-02-01
690755
Small engines may require soundproofing to eliminate one or more of the following effects: hearing loss, speech interference, community annoyance, detectability, and psychological disorientation. Detectability criteria are frequently associated with military applications and may require the use of a soundproof enclosure in addition to other engine treatments. Acoustical noise sources are conveniently classed as either aerodynamic or mechanical. Aerodynamic sources are predominant on small engines. Treatment of exhaust noise by individual components, e.g., muffler, is inadequate; a system approach, through the use of an electro-acoustic analog computer, has proved to be a much more satisfactory procedure.
Technical Paper

A Bench Test Facility for Engine Muffler Evaluation

1963-01-01
630283
The problem associated with laboratory evaluation of muffler acoustical characteristics are complicated both by the acoustical considerations involved in obtaining an adequate noise source and by the ambiguities involved in defining what constitutes quality in a muffler built for general application. In order to quantitatively define the characteristics of quality mufflers, an extensive series of field tests were conducted on a variety of sizes and types of mufflers in conjunction with four engine configurations. Work then turned to the development of a wide band siren noise source and acoustical test system which would simulate the high impedance character of an engine exhaust noise source, and in addition generate the necessary intensity and spectral characteristics required to obtain test data over the range of noise conditions encountered in the field.
Technical Paper

Passenger Car Hydrocarbon Emissions

1962-01-01
620005
This paper presents the results of an investigation of the normal sources of hydrocarbon emissions of passenger cars. The sources were considered to consist of the crankcase ventilation and exhaust systems, the carburetor, and the fuel tank vent. Many studies involving the emissions from several of these sources have been conducted and reported; however, it is believed that this is the first study designed to develop emission data from all the sources of a single group of passenger cars. Although only five vehicles were used, several mechanical conditions and engine and power train configurations were examined. The largest single source of hydrocarbon emissions was found to be the exhaust, followed by the road draft tube. Relatively minor emissions were measured as a result of fuel evaporation from the carburetor and fuel tank during periods of operation and hot soak.
X